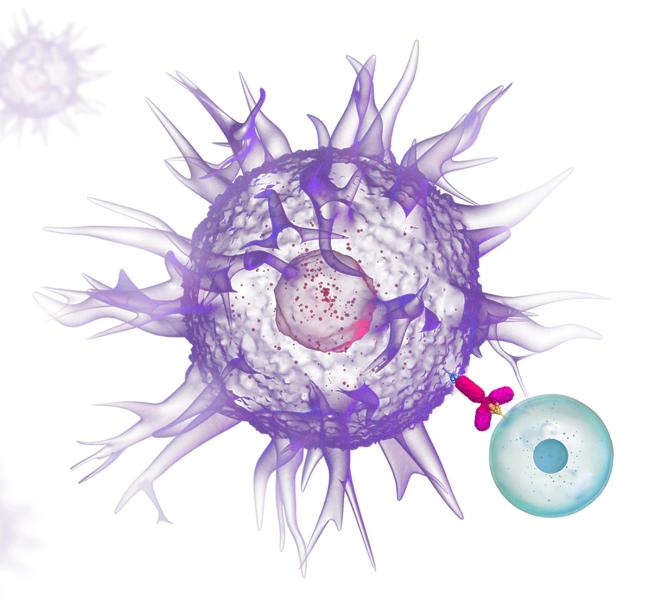
agenus


Forward-Looking Statements

This presentation contains forward-looking statements that are made pursuant to the safe harbor provisions of the federal securities laws, including statements regarding Agenus', MiNK's, and SaponiQx's clinical development and regulatory plans (including the scope of any regulatory approval and the ability to obtain priority review) and timelines for product candidates including balstilimab, zalifrelimab, botensilimab, BMS-986442 (AGEN1777), AGEN2373, AGEN1571, and AGENT-797; our commercialization plans and pipeline's potential to meet multiple blockbuster opportunities; anticipated safety, efficacy, potency, activity, superior responses, and durability; our goals, milestones and value drivers; anticipated commercial market opportunities (including partnering and licensing opportunities); our ability to collect milestone and royalty payments; our ability to continue to selffinance Agenus; our ability to develop first and best in class drug candidates, adjuvants, antigens and formulations; and our ability to meet manufacturing demands. Statements containing the words "may," "believes," "expects," "anticipates," "hopes," "intends," "plans," "will," "potential," or the negative of these terms and other similar words or expressions, are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. These forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied in any forward-looking statement. These risks and uncertainties include, among others, the factors described under the Risk Factors section of Annual Report on Form 10-K for the fiscal year ended December 31, 2023, and our subsequent Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commission and made available on our website at www.agenusbio.com. Agenus cautions investors not to place considerable reliance on the forward-looking statements contained in this presentation. Agenus makes no express or implied representation or warranty as to the completeness of forward-looking statements or, in the case of projections, as to their attainability or the accuracy and completeness of the assumptions from which they are derived. These statements speak only as of the date of this presentation, and Agenus undertakes no obligation to update or revise the statements, other than to the extent required by law. All forward-looking statements are expressly qualified in their entirety by this cautionary statement. Information that may be important to investors will be routinely posted on our website and social media channels.

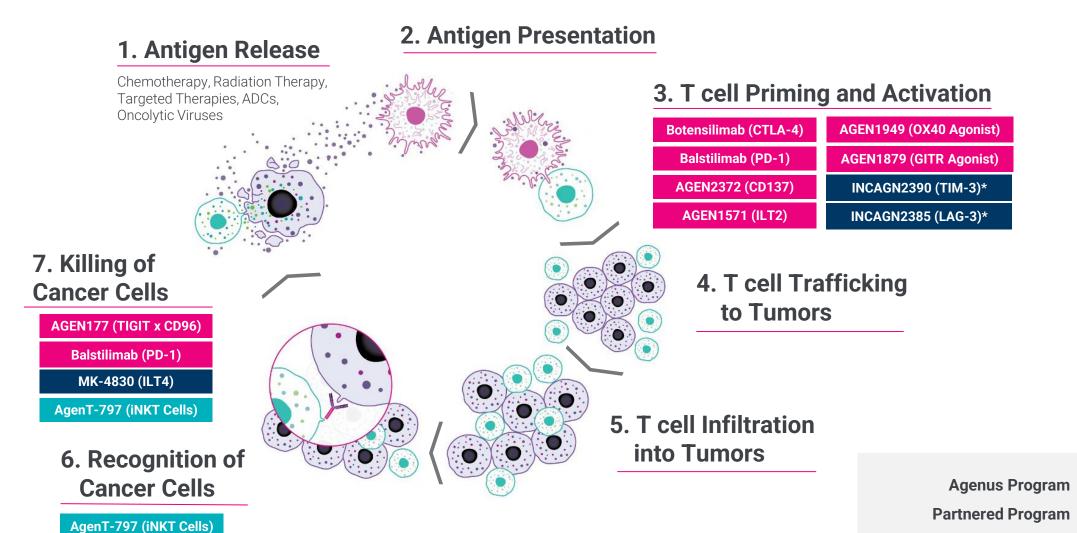
Our Mission:

To Harness the Power of the Immune System to Bring Therapies With Curative Intent to Individuals Living with Cancer

The Power of the Immune System to Fight Cancer

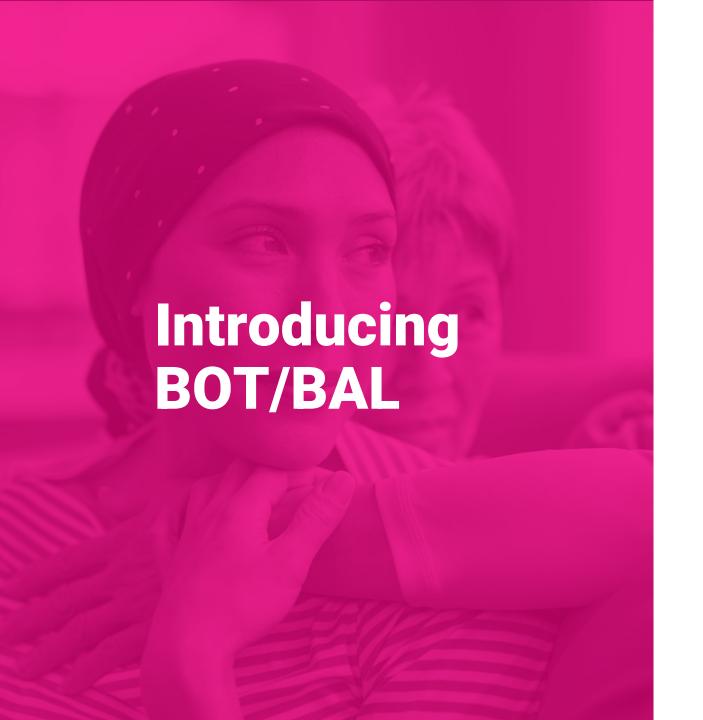
- 40-year-old patient diagnosed with a Stage III MSS* Colon Cancer (8cm tumor)
- Patient received 1 dose of BOT + 2 doses of BAL during 7-week period pre-surgery
- Patient received no prior nor concurrent treatments

Pre-BOT/BAL Treatment



Post-BOT/BAL Treatment

Agenus Portfolio Enables Modulation Across Cancer Immunity Cycle

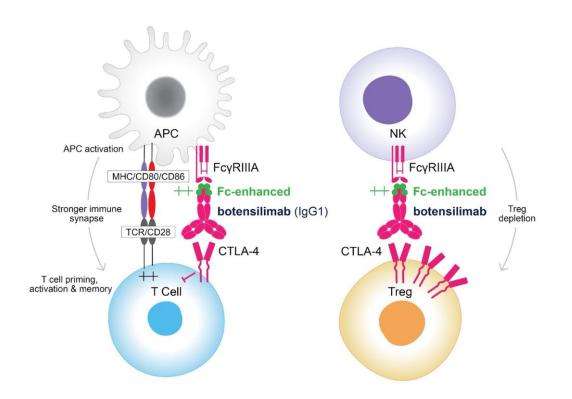

MiNK Therapeutics Program

Clinical Stage Pipeline

Diverse portfolio targeting complementary mechanisms of the cancer immunity cycle

Asset	Target	Approach	Phase I	Phase II	Phase III
		± Balstilimab (anti-PD-1)	Non MSI-H colorectal cancer		
Botensilimab (AGEN1181)	Anti-CTLA-4	+ Balstilimab	PD-1 r/r melanoma		
		+ chemotherapy	Pancreatic (w/chemo)		
AGEN2373 ¹	CD137 Agonist	monotherapy	Solid tumors		
7102112070	OD 107 Agomot	+ Botensilimab	PD-1 r/r melanoma		
AGEN1571	Anti-ILT-2	± Balstilimab ± Botensilimab	Solid tumors		
AGEN1777 ²	Anti-TIGIT x CD96	+ Balstilimab	Solid tumors		
AGEN1423 ³	Anti-CD73 x TGFB	monotherapy	Solid tumors		
INCAGN1876	Anti-GITR	monotherapy	Solid tumors		
AGEN1949	OX40 Agonist	monotherapy	Solid tumors		

Botensilimab (BOT)

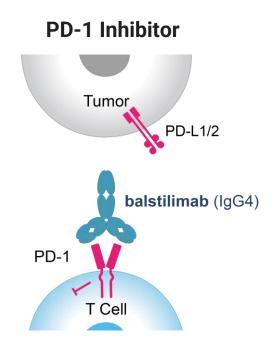

is a Best-in-Class Next-Generation Fc-Enhanced Anti-CTLA-4

Balstilimab (BAL)

is a Novel, Fully Human Monoclonal Immunoglobulin G4 (IgG4) PD-1 Inhibitor

BOT is Uniquely Designed to Direct a More Effective Immune Response to Cancer Through Multiple Mechanisms, Making it Active in IO-refractory Tumors

- 1) Enhances T cell Priming, Activation and Memory
 Primes and expands a diverse set of tumor-reactive T
 cells that can infiltrate the tumor; establishes memory
- 2) Activates APCs/Myeloid cells
 Upregulates co-stimulatory and antigen presentation
 machinery on dendritic cells and other myeloid cells
- Reduces Regulatory T cells


 Removes intratumoral regulatory T cells that suppress the activity of cytotoxic T cells
- 4) Avoids Difficult-To-Treat Immune-Related AEs

 Mitigates complement-mediated toxicities associated with conventional anti-CTLA-4 therapy

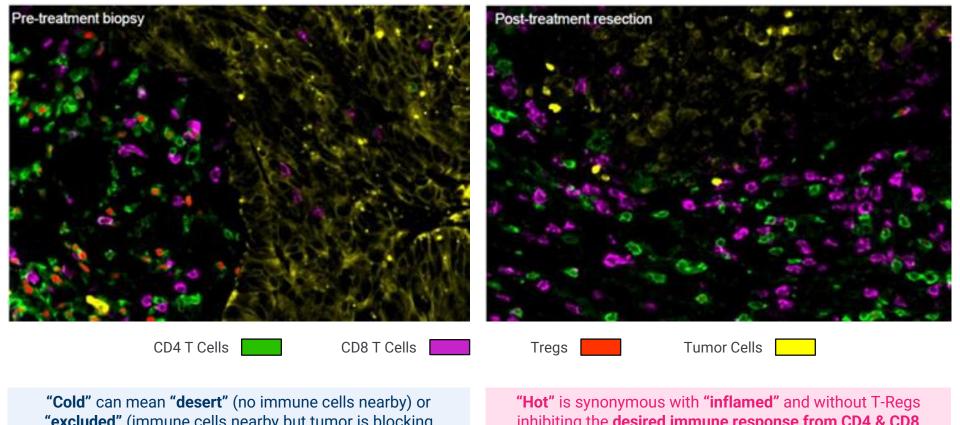
To drive durability of tumor response, BOT is combined with balstilimab (BAL), Agenus' PD-1 antibody

BAL Adds to BOT to Enhance T cell Responsiveness and Immunity Through Distinct But Complementary Pathways

Safety and efficacy analogous to approved anti-PD-1 mAbs

Balstilimab is a fully human IgG4 anti-PD-1 antibody designed to:

- Completely block PD-1-PD-L1/2 interactions
- Enhance T cell activation and effector function
- Restore T cell function of PD-1+ dysfunctional T cells


In combination with botensilimab:

- Balstilimab amplifies and sustains botensilimab-initiated responses by potentiating tumor-reactive T cell activity
 - Balstilimab addition enhances T cell responsiveness beyond what increasing doses of botensilimab alone can achieve
- 2) Balstilimab capitalizes on botensilimab-altered TME to enhance T cell activation, delay exhaustion and reinvigorate dysfunctional T cells

Pre- and Post-BOT/BAL Treatment: Turning a "Cold" Tumor "Hot"

Botensilimab (BOT) promotes rapid T cell infiltration and reduces regulatory T cells (T-regs) in the tumor microenvironment (TME)

- Images characterize changes in an MSS-CRC patient who had a major pathologic response
- Pre-treatment biopsy shows a TME that is infiltrated with Tregs, and few non-Treg immune infiltration
- Post-treatment biopsy shows a significant and rapid increase in CD4 and CD8 T cells, and tumor elimination, with very little tumor cells and Tregs

"excluded" (immune cells nearby but tumor is blocking them from killing); above is the "excluded" phenotype

inhibiting the desired immune response from CD4 & CD8 immune cells

BOT/BAL Program Highlights

Validated targets:

Next Gen CTLA-4 + PD-1

~1,100 patients have been treated

Broadens I-O utilization to cold tumors

(i.e. MSS CRC) which represent about two-thirds of all solid tumors

Highlighted Clinical Studies Evaluating BOT/BAL Across Solid Tumors

Study Name	Sponsor	Regimen	Status	Phase 1	Phase 2	Phase 3
<u>C-800-01</u>	Agenus	Bot +/- Bal	Complete	Solid tumors		
<u>C-800-22</u>	Agenus	Gem/NabP +/- Bot (randomized)	Enrollment Complete	Pancreatic Cancer (2L+)		
<u>C-800-23</u>	Agenus	Bot +/- Bal	Enrollment Complete	PD-1 ± CTLA-4 r/r Melanoma (2L+		
<u>C-800-25</u>	Agenus	Bot + Bal (randomized)	Enrollment Complete	r/r MSS CRC NLM (3L+)		
3B-FOLFOX IST	City of Hope Medical Center	Bev + FOLFOX + Bot + Bal	Enrolling	MSS-CRC (1L)		
UNICORN IST	GONO	Bot +/- Bal	Enrolling	Neoadjuvant CRC		
NEOASIS IST	Netherlands Cancer Institute	Bot + Bal	Enrolling	Neoadjuvant Solid Tumors		
NEST IST	Weill Cornell	Bot + Bal	Enrollment Complete	Neoadjuvant CRC		
<u>24-389</u> IST	MSKCC	Bot + Bal	Enrolling	Neoadjuvant Rectal		

Colorectal Cancer is the 2rd Most Common Cause of Cancer Death Globally

In 2025, it is estimated that in the US:

150,000 people will be diagnosed with colorectal cancer, with incidence increasing in younger people.

>50,000 people die from colorectal cancer

CRC tumors that harbor **Microsatellite Instability** have a high response rate to immunotherapy (PD-1 ± CTLA-4) However, **80-95%** of all Colorectal Cancers are **Microsatellite Stable** and are not treated with immunotherapy*

65,000

- People in the US will be diagnosed with Stage II/III (operable) CRC
- Five-year survival is ~70-75%[†]

Stage II/III CRC


MSI-H

- IO active, but no approved therapies
 MSS
- No PD-1 activity
- Limited first-gen CTLA-4 activity

50,000

- People in the US will be diagnosed with Stage IV (metastatic) CRC
- Five-year survival is ~15%[†]

Stage IV CRC



MSI-H

- PD-1 ± CTLA-4 Approved
- MSS
- No PD-1 activity
- Very limited first-gen CTLA-4 activity

BOT + BAL has demonstrated significant activity in both Stage II/III and Stage IV MSS CRC

BOT/BAL Demonstrated Impact Across MSS CRC Treatment Settings *Data presented at ASCO-GI 2025*

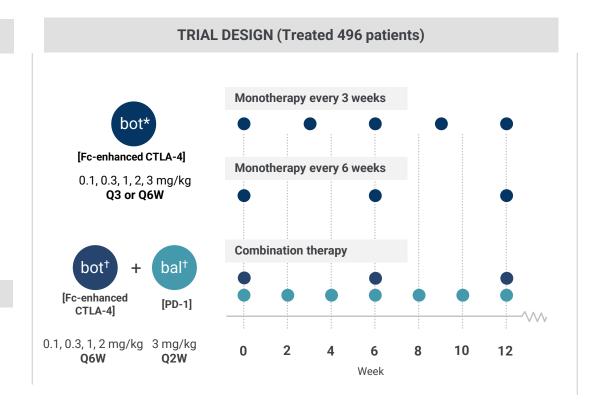
- ~20% ORR across two studies at selected Ph3 Dose
- · Consistent Safety profile

- 66% ORR in pre-treated patients with liver mets
- Tolerable (1 Gr2 & 1 Gr 3 AE of 14 patients)

- 71% pathologic response rate in MSS CRC across 2 studies
- No recurrences with BOT + BAL

C-800-01: Phase I Responses Across Multiple "Cold" and IO Refractory Tumors

NCT03860272: First-in-human trial of botensilimab ± balstilimab in patients with advanced cancer^{1,2}

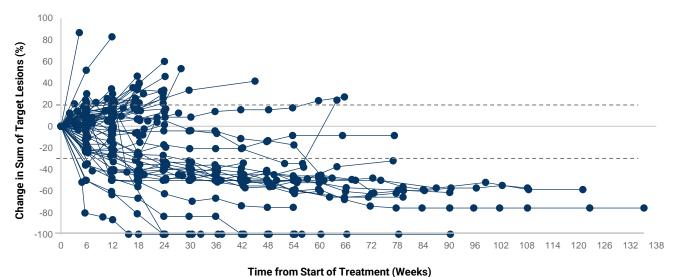

KEY ELIGIBILITY

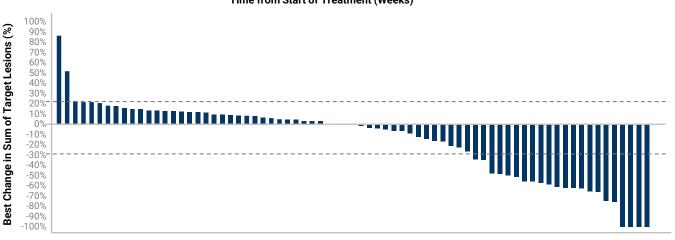
Dose Escalation

- Advanced solid tumors refractory to standard treatment
- Prior IO therapy allowed

ENDPOINTS

- Efficacy: ORR, DCR, PFS, DOR, OS
- Safety: AEs


Expansion Cohorts
Non-MSI-H mCRC
Non-Small Cell Lung Cancer
Melanoma
Pancreatic Cancer
Ovarian Cancer
Sarcoma
HCC


 $[\]hbox{*Crossover to combination from botensilimab monotherapy permitted}\\$

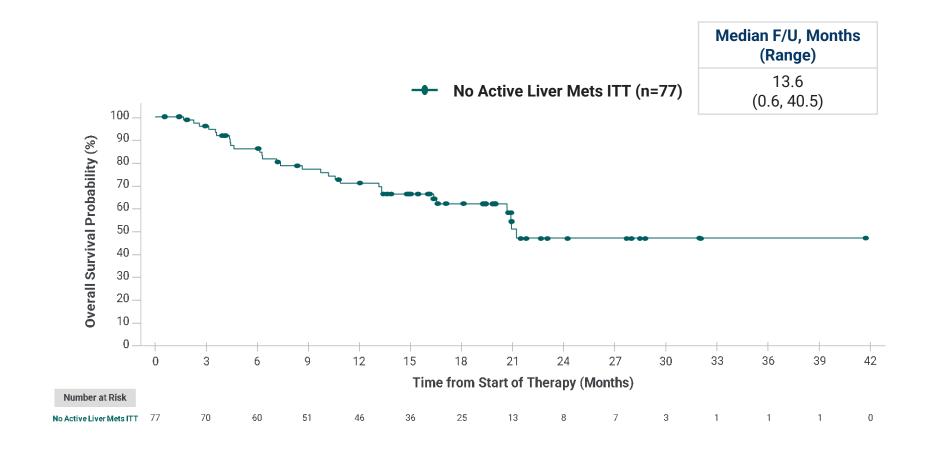
[†]Fixed-dosing also permitted (bot 150 mg Q6W + bal 450 mg Q3W).

Deep and Durable BOT/BAL Responses in 3L+ MSS CRC NLM

(Phase 1b Cohort)

BOT/BAL Intent to Treat (ITT)	Overall (n=77)
Confirmed Objective Response Rate (ORR), % (95% CI)	23% (15, 34)
Best Overall Response Rate (BOR), n (%)	
Complete Response (CR)	1 (1%)
Partial Response (PR)	17 (22%)
Stable Disease (SD)	38 (49%)
Progressive Disease (PD)	17 (22%)
Disease Control Rate (DCR = CR+PR+SD), % (95% CI)	73% (61, 82)
Median Duration of Response (DOR)	NR (5.7 - NR)
Median follow-up, months (range)	13.6 (0.6, 41.8)
VS	
SoC: Fruquintinib, Regorafenib, or Lo	nsurf ± Bev
ORR (%) 2.	8 -7.7%

BOT/BAL is Well-Tolerated Across Solid Tumors


Phase 1b treatment-related adverse events of any grade in 10% of all patients treated with BOT+BAL at 1 mg/kg or 2 mg/kg BOT (N=370)

n (%)	All Grade	Grade 3 or 4
Any TRAE	315 (85)	116 (31)
GASTROINTESTINAL		
Immune-mediated diarrhea/colitis*	147 (40)	58 (16)
Nausea	75 (20)	4 (1)
Vomiting	46 (12)	3 (1)
CONSTITUTIONAL		
Fatigue	123 (33)	8 (2)
Chills	70 (19)	0 (0)
Decreased appetite	70 (19)	0 (0)
Pyrexia	69 (19)	6 (2)
SKIN		
Rash maculopapular	60 (16)	4 (1)
Pruritus	58 (16)	0 (0)
MUSCULOSKELETAL		
Arthralgia	41 (11)	0 (0)
HEPATIC		
Alanine aminotransferase increased	39 (11)	7 (2)

Overall Survival (OS) Benefit from BOT/BAL in 3L+ MSS CRC NLM

(Phase 1b Cohort)

BOT/BAL Intent to Treat (ITT) (n=77, Ph 1b Cohort)				
Median OS (months)	21.2			
6-month OS	86%			
12-month OS	71%			
18-month OS	63%			
Ph2: 6-month OS	90%*			

C-800-25: Phase II Study in 3L+ MSS CRC Non Liver Metastases

NCT05608044: Ongoing global, randomized phase II study, enrollment completed October 2023

75 mg BOT Q6W • ITT: n=38 Dose optimization Safety: n=37 **Objectives** Contribution of components 75 mg BOT Q6W + 240 mg BAL Q2W • ITT: n=62 · Not MSI-H or dMMR **Patient** · Safety: 62 No active liver metastases **Population** · Previously treated with **150 mg BOT Q6W** fluoropyrimidine, oxaliplatin, and irinotecan-based Randomized • ITT: n=40 chemotherapy and, if medically Safety: n=39 appropriate with anti-VEGF and/or anti-EGFR 150 mg BOT Q6W + 240 mg BAL Q2W • ITT: n=61 Safety: 60 · Primary: ORR by investigator **Endpoints** assessment per RECIST 1.1 · Secondary: DOR, PFS, and OS SOC (trifluridine/tipiracil or regorafenib) Safety: AEs • ITT: n=33 PK/Immunogenicity Safety: n=21 Total ITT: N=234 Total Safety: n=219

Enrollment completed October 2023; data cutoff: 11 November 2024. NCT05608044: https://clinicaltrials.gov/study/NCT05608044

Responses and Survival Benefit Observed In Randomized Phase 2

	BOT 75 mg Q6W		BOT 150 mg Q6W		SOC
FDA aligned dose for Phase 3 pivotal study	BOT / BAL n=62	Monotherapy n=38	BOT / BAL n=61	Monotherapy n=40	Trifluridine/Tipiracil or Regorafenib n=33
Confirmed ORR, n (%) 95% CI	12 (19%) 10-31	0 (0%) 0-9	5 (8%) 3–18	3 (8%) 2-20	0 (0%) 0-9
DCR, n (%) 95% CI	34 (55) 42-68	14 (37) 22-54	33 (54) 41-67	15 (38) 23-54	12 (36) 20-55
Median follow up, months (range)	12.7 (1.6–19.7)	9.8 (0.6–17.7)	12.9 (0.1–20.6)	13.4 (0.7-21.1)	10.9 (0.0-17.7)

DOR not mature with 14/20 (70%) of responses ongoing

Safety Summary from Randomized Phase 2

	BOT 75 mg Q6W		BOT 150 mg Q6W		SOC	
	BOT / BAL n=62	BOT Mono n=37	BOT / BAL n=60	BOT Mono n=39	Trifluridine/Tipiracil or Regorafenib n=21	
Any TRAE, n (%)	54 (87)	28 (76)	60 (100)	31 (79)	19 (90)	
Grade ≥3	22 (35)	8 (22)	26 (43)	9 (23)	12 (57)	
Any imAE, n (%)	38 (61)	20 (54)	49 (82)	18 (46)	1 (5)	
Diarrhea/colitis ^a	22 (35)	14 (38)	30 (50)	13 (33)	0 (0)	
Hypothyroidism ^a	8 (13)	0 (0)	15 (25)	0 (0)	0 (0)	
Skin ^a	4 (6)	2 (8)	17 (28)	1 (3)	0 (0)	
Grade ≥3	20 (32)	7 (19)	24 (40)	10 (26)	1 (5)	
Diarrhea/colitis ^b	11 (18)	4 (11)	16 (27)	7 (18)	0 (0)	
Pneumonitis ^b	2 (3)	1 (3)	2 (3)	0 (0)	1 (5)	
Hepatitis ^b	1 (2)	2 (5)	1 (2)	2 (5)	0 (0)	

- No treatment-related deaths
- No new safety signals

⁷⁵ mg BOT / BAL best risk-benefit and selected for phase 3

^aMost common imAEs. ^bGrade ≥3 imAEs in ≥5% of patients.

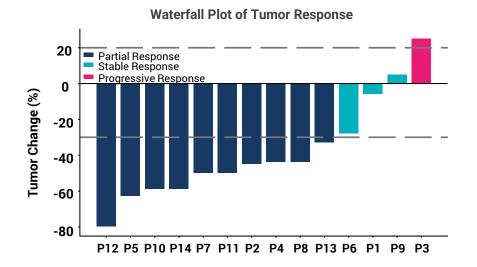
Ongoing P2 Study Evaluating BOT/BAL+Bev+FOLFOX in 1L MSS CRC Setting

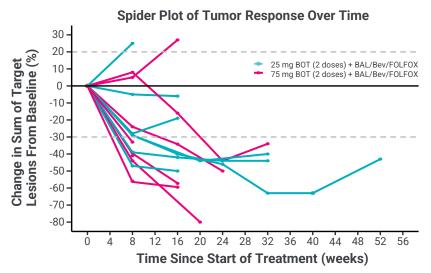
Escalation) n=20 **Enrollment Complete** BOT (25mg for 2 doses) + Balstilimab + bevacizumab + FOLFOX (n=7) **Enrollment Complete** BOT (75mg for 2 doses) + Balstilimab + bevacizumab + FOLFOX (n=7) **Enrolling** BOT (75mg for 4 doses) + Balstilimab + bevacizumab + FOLFOX (n=6) **Enrolling** BOT (150mg for 2 doses) + Balstilimab + bevacizumab + FOLFOX (n=6)

Part A (Dose

Part B (Expansion)

BOT (selected dose) + Balstilimab + bevacizumab + FOLFOX





Lead Investigator Marwan Fakih, MD (City of Hope, Los Angeles)

Robust Responses With BOT/BAL/Bev/FOLFOX in MSS CRC

BOT/BAL delivers benefit above SOC, demonstrating combinability with chemo and anti-VEGF with no DLTs

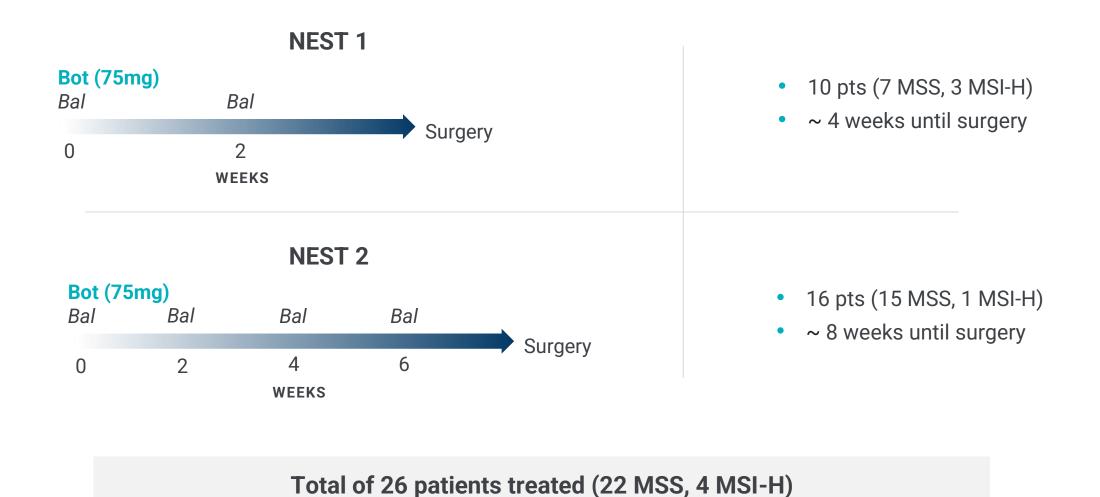
Efficacy Summary

- 9/14 patients treated had active liver metastatic disease (6/9 responded)
- 12/14 patients FOLFOX rechallenge ORR 67%; historical benchmark of FOLFOX rechallenge of 10-15%.

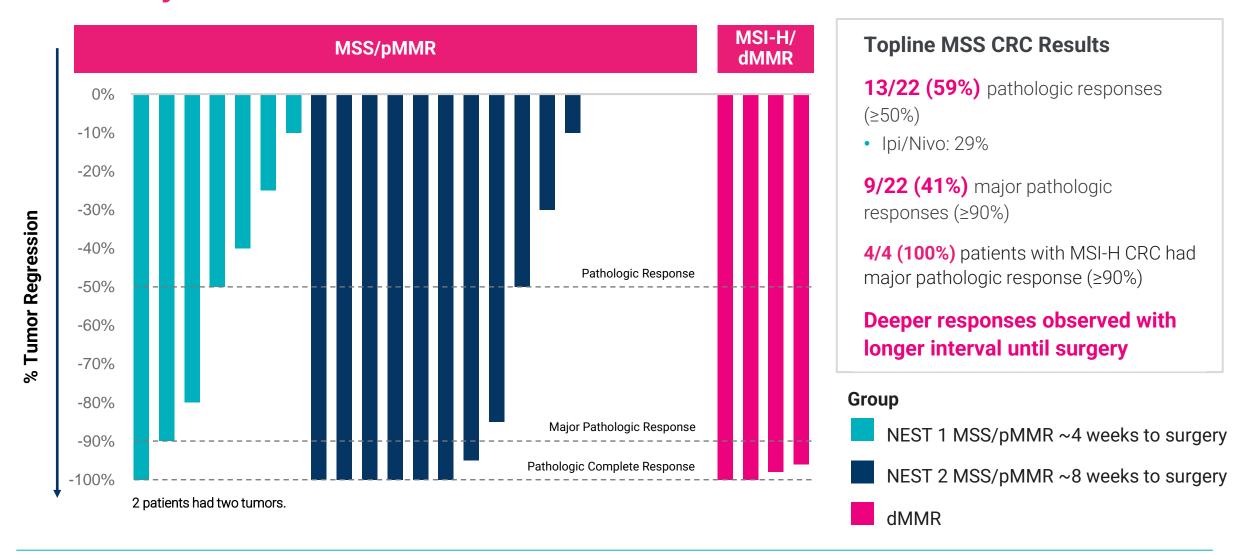
Safety Summary

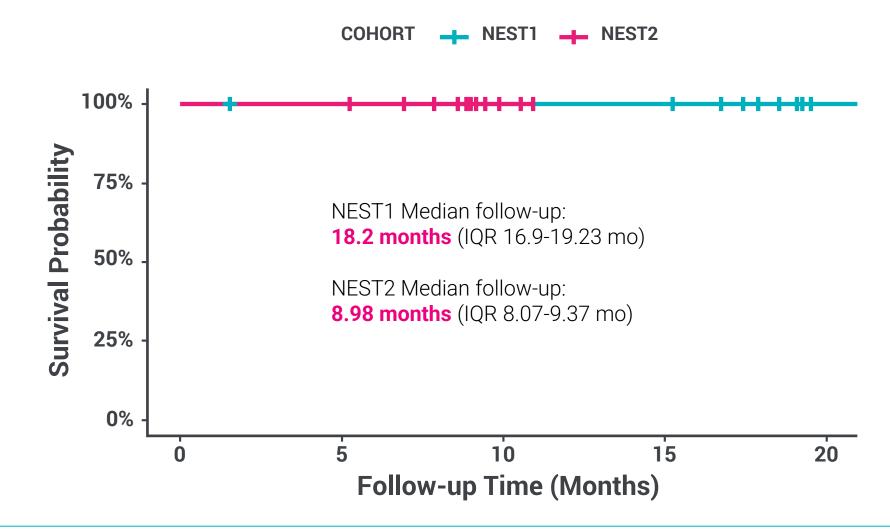
 No DLTs, one Gr2 and one Gr3 immune-mediated diarrhea/colitis

Next Steps:


Study expanded to accrue additional patients (target 6 patients in each arm):

- 75mg BOT (4 doses)
- 150mg BOT (2-4 doses)


3B+FOLFOX Interim Results*	Overall (n=14)	25mg BOT (n=7)	75mg BOT (n=7)
ORR, %	71 %	57%	86%
CR	0 (0%)	0 (0%)	0 (0%)
PR	10 (71%)	4 (57%)	6 (86%)
SD	3 (21%)	2 (29%)	1 (14%)
PD	1 (7%)	1 (14%)	0 (0%)
DCR (CR + PR + SD), %	93%	86%	100%


NEST: Ongoing Phase 1/2 Study Testing BOT/BAL in Neoadjuvant CRC

NEST: BOT/BAL Neoadjuvant Demonstrates Significant Tumor Reductions in Neoadjuvant MSS CRC

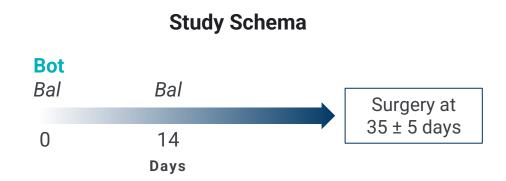
NEST: No Recurrences with Median Follow-up of 18 months (NEST-1) and 9 months (NEST-2)

UNICORN: Evaluating Neoadjuvant BOT +/- BAL in MSS CRC

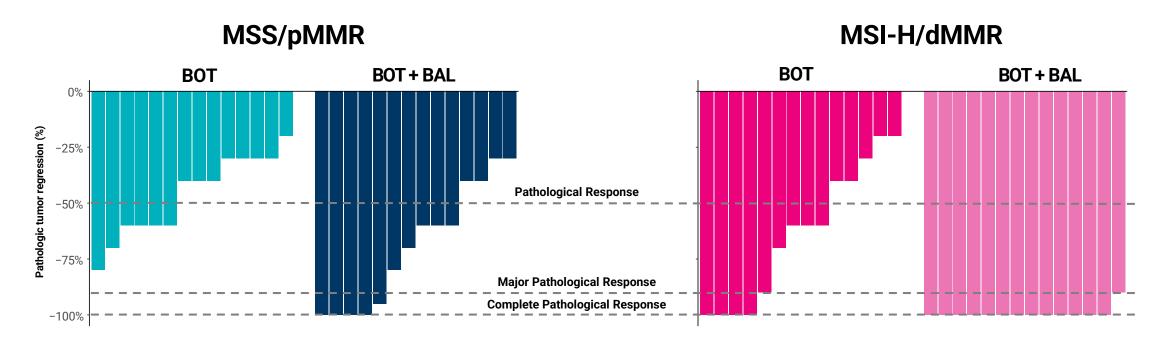
Multicenter Trial (10 sites in Italy); 56 patients received 1 dose of BOT ± 2 doses of BAL; surgery on day 35 ± 5 days

Study Design & Patient Characteristics

Non-metastatic, radiologically staged rT3-4 N0-2, resectable Colon Cancer (n=56)

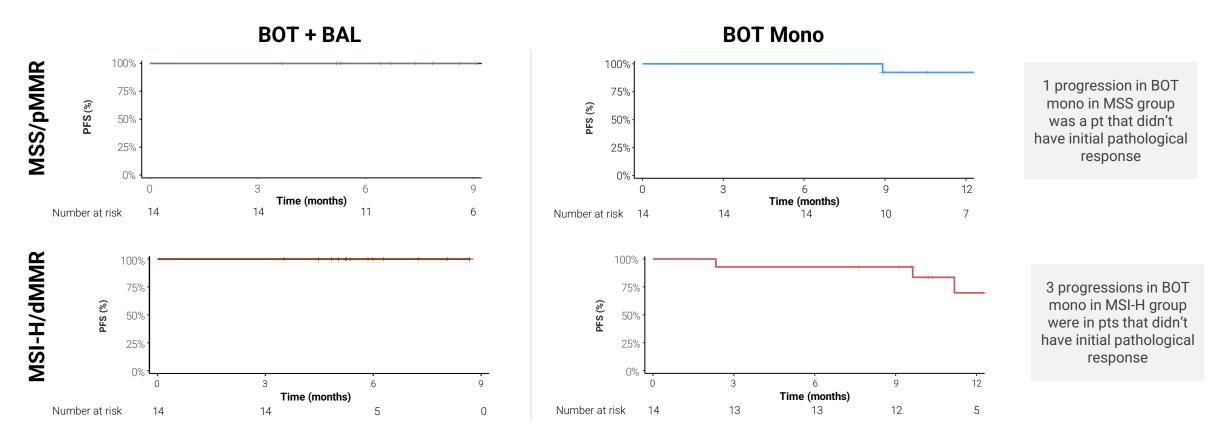

MSI-High (or dMMR), absence of POLE/D1

1 dose BOT (1mg/kg)
(n=14)


MSI-High (or dMMR), absence of POLE/D1 1 dose BOT (1mg/kg) + 2 doses BAL (3mg/kg) (n=14)

MSS (or pMMR), absence of HER2 overexpression/amplification
1 dose BOT (1mg/kg)
(n=14)

MSS (or pMMR), absence of HER2 overexpression/amplification 1 dose BOT (1mg/kg) + 2 doses BAL (3mg/kg) (n=14)


UNICORN: Neoadjuvant Study Demonstrates Complete/Major Responses with BOT/BAL in MSS Colon and Validates Contribution of Components

	PCR n (%)	MPR n (%)	PR n (%)
Cohort 4 (n=14)	0 (0)	0 (0)	6 (43)
Cohort 5 (n=14)	4 (29)	5 (36)	10 (71)

	PCR n (%)	MPR n (%)	PR n (%)	
Cohort 6 (n=14)	4 (29)	5 (36)	9 (64)	
Cohort 7 (n=14)	13 (93)	14 (100)	14 (100)	

UNICORN Results Demonstrate No Recurrences with BOT/BAL in Neoadjuvant Setting - Consistent with NEST Study Findings

- In UNICORN (median follow-up 11-13m for BOT and 6-9M for BOT/BAL) only recurrences with BOT mono (all non-responders)
- 34 MSS patients between the two trials treated with BOT/BAL with median follow-up 9-18 months

BOT/BAL Demonstrates Consistent Meaningful Responses Across Independent NEST & UNICORN Studies in Neoadjuvant MSS CRC

Neoadjuvant pMMR or MSS

		_		A .	
	D1		70	ΛІ	
DU I / DAL	D١		/ D	AL	_

	NEST (N=22)	UNICORN (N=14)	
Pathologic Complete Response	32 %	29%	
Major Pathologic Response ≥ 90%	41%	36%	
Pathologic Response ≥ 50%	59 %	71%	

Neoadjuvant dMMR or MSI-H

BOT/BAL

	NEST (N=4)	UNICORN (N=14)
Pathologic Complete Response	75 %	93%
Major Pathologic Response ≥ 90%	100%	100%
Pathologic Response ≥ 50%	100%	100%

Historical Benchmarks

IPI/NIVO	FOLFOX
NICHE (N=31)	FOXTROT (N=553)
10%	3%
23%	8%
29%	23%

K	FOLFOX	IPI/NIVO
,	FOXTROT (N=115)	NICHE (N=31)
	4%	69%
	5%	97%
	7%	100%
	4% 5%	69% 97%

MiNK Therapeutics (Nasdaq:INKT): Allogeneic Innate T Cell Therapy

Pioneering allogeneic invariant Natural Killer T cell therapies for oncology and other immune-mediated diseases

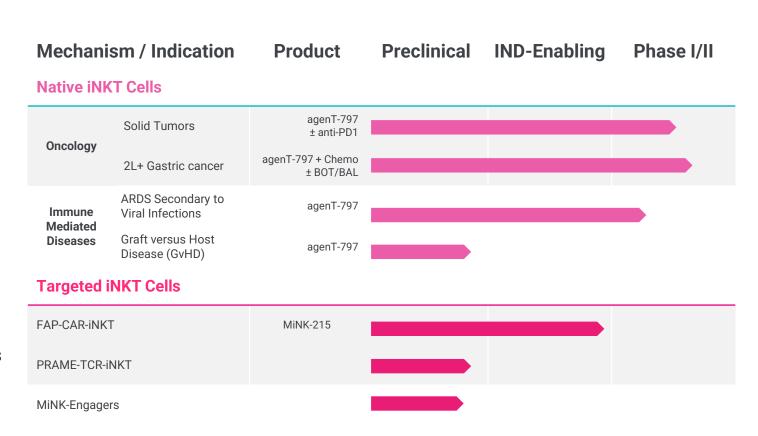
iNKTs Bridge Adaptive and Innate Immune Systems

 Directly attack cancer cells, recruit host immunity, and reshape tumor microenvironment

Encouraging Phase I Data in Cancer and ARDS

- Clinical benefit of iNKTs ± anti-PD-1 in heavily pre-treated solid tumor patients refractory to prior standard of care.
- 75% survival in elderly mechanically ventilated patients with severe ARDS secondary to COVID-19 compared to 30% case control.

Native and Engineered iNKT Programs


- iNKT cells engineered with CAR and TCR
- Bispecific iNKT cell engagers

Proprietary Manufacturing at Scale

 Highly efficient isolation process from healthy donors with potential to generate ≥5000 doses per donor

Access to Validated Immuno-oncology Therapies

Combinations with Agenus' immuno-oncology antibodies

SaponiQx: Designed to be an Integrated Vaccine Platform

Supplying existing demand for delivery of novel adjuvants

Discovery of novel adjuvants enabling superior vaccines

Foundation

Tree Bark Based STIMULON QS21

Generation I

- Natural product extracted from a rare tree in Chile
- Adjuvant component of SHINGRIX and MOSQUIRIX

Enabler

Cultured Plant Cell (cpc) STIMULON QS21

Generation II

- Secure supply chain with consistent quality and scalable production
- GMP material available
- FDA Master File Submitted

Future

STIMULON Saponin Catalog

Generation III

- Production of diverse saponins in partnership with Ginkgo Bioworks
- Harnessing the power of Al and Generative Molecular Design to create bespoke adjuvants to elicit tailored immune responses

Solutions

STIMULON Integrated Vaccines

Generation IV

- Modular vaccine platform integrating antigen, adjuvant and carrier
- Designed to address pandemic threats

Overview of Emeryville Facility

83,000sqft., End-to-End Development and cGMP Clinical/Commercial Facility

Annual cGMP Drug Substance Production Capacity = 20-40 Batches*

- cGMP upstream manufacturing: 1 x 100L, 1 x 500L, and 4 x 2000L SUBs;
- Automated bulk drug filling systems
- Agenus has made facility and capital upgrade investments totaling >\$100M since 2021

Product/Service offering includes:

- Upstream and Downstream Process Development
- Analytical, Formulation and Cell Line Engineering Development
- Cell Banking
- Drug Product Vialing, Fill, Finish and Labeling/Packaging
- Warehousing for finished product, material storage and distribution with 2-8C and -20C cold rooms

Overview of Berkeley Facility

26,000sqft., cGMP Clinical Facility

Annual cGMP Drug Substance Production Capacity = 8-16 Batches*

- cGMP upstream manufacturing: 1 x 100L, 1 x 500L, and 2 x 1000L SUBs
- All 12 Agenus mAbs currently in Ph1/Ph2 clinical studies have been manufactured at this facility
- Clinical GMP ready in 2H 2025

Product/Service offering includes:

- Upstream Process Development
- Analytical, Formulation and Cell Line Engineering Development
- Cell Banking
- Drug Substance only (no Drug Product)

Expansion Capacity Available at Agenus-Owned Vacaville, CA site (66.4ac)

Biologics CMC Campus Designed; Potential to Build 300,000sqft of cGMP Production Capacity

- 66.4ac. of greenfield, prime biomanufacturing land (adjacent to facility Lonza purchased from Roche/Genentech for \$1.2B in April 2024)
- 100-125 DS batches of annual production capacity
- Campus designed to accommodate additional production modalities (cell therapy, gene therapy, vaccines and adjuvants)

41

agenus

agenusbio.com