TuSimple Investor Presentation

September 2023

Disclaimer

This presentation and any accompanying oral statements (together, this "Presentation") contain forward-looking statements. All statements other than statements of historical fact contained in this letter, including statements as to future results of operations and financial position of TuSimple Holdings Inc. and its subsidiaries (the "Company"), planned products and services by the Company or any of its subsidiaries, business strategy and plans of the Company or any of its subsidiaries, launch dates of products or services in the United States or in any other territory, expected safety benefits of the Company's autonomous semi-trucks, objectives of management for future operations of the Company, market size and growth opportunities in various global territories, competitive position and technological and market trends in various global territories, statements regarding strategies for the Company's Asia business, are forward-looking statements. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. In some cases, you can identify forward-looking statements by terms such as "will", "expect," "plan," "anticipate," "intend," "target," "project," "predict," "potential," "explore" or "continue" or the negative of these terms or other similar words. The Company has based these forward-looking statements largely on its current expectations and assumptions and on information available as of the date of this letter. The Company assumes no obligation to update any forward-looking statements after the date of this letter, except as required by law.

The forward-looking statements contained in this Presentation are subject to known and unknown risks, uncertainties, assumptions and other factors that may cause actual results or outcomes to be materially different from any future results or outcomes expressed or implied by the forward-looking statements. These risks, uncertainties, assumptions and other factors include, but are not limited to, those related to the Company's restructuring plan including potential cost-savings, the company's ability to regain compliance with Nasdaq listing standards, autonomous driving being an emerging technology, the development of the Company's technologies and products, the Company's limited operating history in a new market, the regulations governing autonomous vehicles, changes in the Company's board of directors and senior management, the Company's dependence on its senior management team, reliance on third-party suppliers, potential product liability or warranty claims, the protection of the Company's intellectual property, securities class action litigation, strategic alternatives for the Company's U.S. business, and government or regulatory policies, inquiries and actions. Moreover, the Company operates in a competitive and rapidly changing environment, and new risks may emerge from time to time. You should not put undue reliance on any forward-looking statements. Forward-looking statements should not be read as a guarantee of future performance or results and will not necessarily be accurate indications of the times at, or by, which such performance or results will be achieved, if at all. It is not possible for the Company to predict all risks, nor can the Company assess the impact of all factors on its business or the markets in which it operates or the extent to which any factor, or combination of factors, may cause actual results or outcomes to differ materially from those contained in any forward-looking statements the Company may make.

You should carefully consider the foregoing factors and the other risks and uncertainties described under the caption "Risk Factors" in our Annual Report on Form 10-K for the fiscal year ended December 31, 2022, filed with the Securities and Exchange Commission (the "SEC") on September 7, 2023, and the Company's other filings with the SEC. These SEC filings identify and address other important risks and uncertainties that could cause actual events and results to differ materially from those contained in the forward-looking statements. This Presentation also contains estimates, forecasts and other statistical data relating to market size and growth and other industry data. These data involve several assumptions and limitations, and you are cautioned not to give undue weight to such estimates. The Company has not independently verified the statistical and other industry data generated by independent parties and contained in this Presentation and, accordingly, it cannot guarantee their accuracy or completeness. In addition, assumptions and estimates of the Company's future performance and the future performance of the markets in which the Company competes are necessarily subject to a high degree of uncertainty and risk due to a variety of factors. These and other factors could cause results or outcomes to differ materially from those expressed in the estimates.

TuSimple Investor Presentation

01

TuSimple Holdings at a Glance

Strong Investment Thesis for AV Trucking

02

03

Proven L4 Technology Leadership and Protected IP Portfolio

04

Concrete Development Roadmap with Clear Commercialization Strategy 05

Full Stack Autonomous Technology

06

2023 Considerations and Long-Term Framework

01 TuSimple Holdings at A Glance

Our mission is to enable the most safe, fuel-efficient & low-cost freight capacity by developing the best L4 autonomous technology, hardware and go-to-market strategy

TuSimple Holdings at a Glance

1. World's First Driver Out was done on open public roads in the U.S. in December 2021 2. As of June 30, 2023 3. Primarily Driver-In miles, 4. Passed an independent 3rd party (TÜV SÜD) safety audit with zero nonconformities 5. System on a chip 6. Autonomous Vehicle

One Holding Company, Two Distinct Businesses

Independent use cases (ODD¹), and hardware ecosystems resulted in the need for separate engineering teams to pursue different product roadmaps

Shared	Common reporting, treasury, and compliance functions
Cost Savings	US utilizes data annotation services and procures hardware from APAC ops

Two Distinct Operations

US	APAC
Stand-along	Stand-alone HR systems, enterprise applications, and communication tools
Stand-alone	Stand-alone end-markets, functional teams, source code, and data repositories

Development Tailored to Current Use Case Application

Medium to Long Haul Route On highway Traditional Class 8 Trailer	VS.	Port-to-Terminal Connection Route Port drayage Chassis over engine trucks

Key Development Differences

Operational Design Domain

Traffic patterns Driving behavior Port drayage vs. US on-highway

Training Data Object properties Other road user behavior

tu simple

Hardware Ecosystem Tier I supplier base Sensor selection and availability US Class 8 vs. chassis over engine

Engineering Teams Source code base Data repositories

TuSimple | Investor Presentation

Structure Today

Z

U.S.: Team Led by Seasoned Technology Leaders

Robert Rossi SVP, Co-Head Technology

- 40+ years of experience in technology
- SVP Engineering of Autonomous Driving, TomTom
- Group Program Manager, Microsoft
- Founder and Chief Engineer, multiple startups
- 2 patents issued

Jing Zhu SVP, Co-Head Technology

- 30+ years of experience in technology
- General Manager, VIP.com
- Chief Technology Officer, Shanda Online

vip

yahoo!

- Senior Director of Engineering, Yahoo
- 8 patents issued

Adrian Thompson VP, Systems & Safety Eng.

- 30+ years of experience in technology
- Director of Systems
 Engineering, Waymo
- Head of Systems
 Engineering and Test, Uber
 ATG
- Director of Systems
 Engineering, L3

Graham Taylor VP, Hardware

- 25+ years of experience in technology
- Senior Engineering Manager, Zoox
- Senior Engineering Manager, Jamco
- Head of Engineering, B/E Aerospace

700X

tu simple

Tom Wang VP, Software Engineering

- 25+ years of experience in technology
- Director of Engineering, DeepMap
- Software Architect and Lead, Apple
- Software Architect, EMC

APAC: Experienced Management Team

Jianan HAO Head of China

- Company founding member and overseeing R&D activity and operations
- Over 10 years research experience in parallel & distributed computing
- Former Research Scientist at Temasek National Laboratory

Naiyan WANG CTO

- Overseeing AV full stack development
- Renowned expert in computer vision and deep learning with over 50 papers published with more than 17,000 citations
- 1st place in 2D Detection / 3rd place in 3D Detection of the first Waymo Open Dataset Challenges in 2020
- Co-founder and early developer of opensource deep learning framework MXNet
- Google PhD Fellowship candidates in 2014 (one of only 4 selected in China)

Haiquan LI VP of Engineering

- Lead TuSimple APAC engineering organization
- Over 8 years R&D experience in autonomous truck software /hardware and system integration
- Lead APAC hardware selection (including the TDC), evaluation and production process

- Over 13 years R&D experience in autonomous driving
- Previously served as Assistant Researcher, Lecturer, Senior Researcher, and Visiting Associate Professor at Waseda University
- Over 80 patents granted and more than 260 patent applications submitted in the field of autonomous driving

02 Strong Investment Thesis for AV Trucking

rrrrr

Large TAM With Secular Growth Drivers

tu simple

The Need for Autonomous Trucking Remains

US

~3 million Class 8 semi-trucks in the US¹

+70% of all freight in the US transported by trucks²

~8 million heavy-duty trucks in China³

APAC

~1.2 million large-size trucks in Japan⁴

INCREASED DEMAND FROM E-COMMERCE TRENDS FACED WITH A GROWING SHORTAGE OF DRIVERS & SAFETY ISSUES

Diminishing Supply

- U.S. shortage of 78,000 drivers²
- China drivers declined from 21 million to 17 million 2018 to 2020⁵
- 45% of Japan's drivers were aged 50 or older⁶

Increasing Demand

- Rising e-commerce penetration
- Same or next-day shipping trends

Safety Impact

- 94% of all accidents are due to human error⁷
- 47% increase in fatalities involving semi-trucks from 2009-2020⁷

THE TUSIMPLE OPPORTUNITY

US

- Reduced costs: Labor makes up ~43% of per mile cost structure⁸
- 10% of the nation's trade corridors account for moving nearly 80% of all transported goods⁹

APAC

- China: Middle mile accounts for ~60% of total freight market³
- Japan: 50% of total long-haul transportation in freight corridor that connects Tokyo, Nagoya and Osaka¹⁰

 FMCSA: 2022 Pocket Guide to Large Truck and Bus Statistics 2. ATA 3. China National Bureau of Statistics 4. Japan Trucking Association 5. Ministry of Transport of China 6. Japan's Ministry of Internal Affairs and Communications 2022 report 7. National Highway Traffic Safety Administration.
 ATRI 9. Freight Analysis Framework (Bureau of Transportation Statistics and the Federal Highway Administration 10. Japan's MLIT and JTA

12

tu simple

Demonstrable Value Proposition

X $\$0.35 - \$0.55^4 = 262 - 687k$

1. Based on company data in the U.S. 2. Does not include any expected terminal costs, drayage costs, development costs, and non-cash accounting costs (e.g., depreciation and amortization) 3. Assumes five-year life of truck. 4. Assumes cost of driver as \$1.00 per mile; does not incorporate incremental capex associated with higher purchase price of TuSimple L4 truck; assumes virtual driver cost per mile is \$0.45 - \$0.65

U.S. Regulatory Environment Paving the Way for Autonomy tu simple

29 states Allow Driver Out AV

Momentum towards allowing for testing and deployment of ADS-equipped commercial trucks:

- Kansas (2022) passed legislation
- ▲ West Virginia (2022) passed legislation
- ▲ Mississippi (2023) passed legislation
- California (2023) held an AV workshop to discuss potential regulations
- California bill (AB 316) prohibiting autonomous vehicles over 10,000 pounds from operating without a driver is in process

APAC Regulatory Environment Supportive of Autonomous Freight Capacity

Regulatory Environment in China and Japan

China

- Shanghai first city in China to pass legislation to allow L4 fully driverless testing of autonomous trucks
- Clear strategic development goals set for AV industry by 2025, promoting all around development framework and L4 AV commercialization
- Regulatory rules issued to set industry standards for AV vehicles, road tests, infrastructure, etc.

Japan

- Autonomous truck testing allowed on most highways and local roads
- Government announced plans to launch a self-driving lane on some sections of the New Tomei Expressway by 2024
- Government has set targets for commercial operation of L4 fully autonomous trucks by 2026

tusimple

03 Proven L4 Technology Leadership and Protected IP Portfolio

A History of Industry Firsts

tu simple

Only Player to Complete Driver Out in the US

1. Illustrative competitors only 2. Operational Design Domain 3. Waymo Via AV trucking development paused 4. Aurora focused primarily on trucking today

tu simple

...and Only Player to Complete Driver Out in China tu simple

Intellectual Property - A Leader in AV Trucking IP

TuSimple | Investor Presentation

1. As of June 30, 2023: TuSimple research utilizing PatSnap. 2. As of June 30, 2023 3. Measured by global patent asset originated

04 Concrete Development Roadmap with Clear Commercialization Strategy

Clear Strategy to Commercializing First Autonomous Lane tusimple

Building on prior achievements, a clear and achievable roadmap in the U.S. and APAC to be first to launch commercial autonomous freight operations

Driver Out Pilot	Expanded Safety	Increased Reliability	Improved Cost Effective 😑	Commercial Launch
Customer-Focused	Commercial launch must me "freight capacity" reliability	eet the rigorous demands of a sh threshold & clear line of sight on	ipper, including a minimum "I 1 cost-per-mile that is compe	evel of service" & titive with human drivers
Initial Driver Out Pilot Proof of Technology	 ✓ Completion of Driver Out Pilot Safety Case ✓ Completion of Driver Out Pilot 	 ✓ One trip per week x ✓ U.S. Operate in nighttime ✓ China Operate in daytime 	Non-scalable AV operations (survey vehicle, chase vehicle, pre-trip & post-trip costs)	Feature Complete + Redundancy
Initial Commercial Launch Proof of Business Case	 Completion of Expanded Driver Out Safety Case Completion of 3rd Party Audit¹ 	 Multiple round trips per day Operate in nighttime and daytime Operate in dynamic construction zones 	Remove survey vehicle Remove chase vehicle Reduce miles between returning to MRC Ir Improve AV operations	Repeatable Ops + mproved Cost Efficiencies

progress

. Audited U.S. operations o SAE standard J3018 and AVSC AV Testing best practice. Audit performed on operations; ADS functionality safety audit in

Two Progressive Business Models

Accelerate path to scale with TuSimple Capacity, handling testing and maintenance, before full earnings potential is achieved with Carrier-Owned Capacity

(P)

Business Models applicable to U.S. and APAC

TuSimple Capacity Ready to commercialize today

- TuSimple enables automated freight routes
- Strategic route-by-route expansion where TuSimple controls the outcome
- Fastest path to market and critical for industry adoption

\$/mileFreightRate

Capital Light Method **Uses Shared Terminals** Leverages Shared AFN¹ Terminals Freight Users

Value Proposition

Θ

Carrier-Owned

Long-term business strategy

- TuSimple enables OEMs to manufacture autonomous trucks
- Required to sell to third-party customers
- Dependent on OEM and hardware supply chain timelines

\$/mileSubscriptionFee

Upfront Investment with Payback < 1 year **Controls Own Capacity** Uses Own Terminals

AFN Rollout and Expansion Plan

Beginning in the east and building out AFN covering major shipping routes in ъ China

Short term Mid term Long term

- dynamically updating the map as necessary
- Texas Triangle (Dallas, Houston, San Antonio, Austin) is highly trafficked by truck freight and well-suited to automation
- Illustrative development plan considers route in autonomy friendly jurisdictions

U.S. Development Roadmap and Plan

Commercialization roadmap strategically aligned with overall industry readiness

	Immediately Actionable: 2023 - 2026	Within Range: 2027 - 2029		On the Roadmap: 2030+
Primary Focus	 Mature ADS technology for commercializing initial freight lane Freeze complete ADS onboard software and hardware for contract upfitter 	 Expand self-operated AV fleet Freeze complete ADS onboard software and hardware for OEM production programs 	:	Scale AFN density and coverage Enable launch of OEM production vehicles
	Arizona+	Texas Triangle+		Sunbelt+
Ecosystem Development	Development of AV-ready redundant base truck platforms & components	<i>Continued hardware maturity and optimization</i>		Scaled production of integrated OEM produced AV trucks
Number of Driver Out Trucks	105	100s – 1,000		10,000s
Progressive L4 Revenue Models	TuSimple Cap	pacity	Λ	Carrier-Owned Capacity
) (Initial Comn Launch	nercial	\bigwedge	
nple Investor Pre	sentation			

APAC Development Roadmap and Plan

Commercialization roadmap strategically aligned with overall industry readiness

	Immediately A	Actionable: 2023 - 2026	Within Range: 2027 - 2029	On the Roadmap: 2030+
Primary Focus	 Enhance L4 tech road tests in Chi reliability for co Validate Driver (capabilities with 	nnology; iterate through ina and Japan to prove mmercial applications Out operation n several pilots	Build AFN in selected routes and regions with highest commercialization potential ¹ Expand self-operated AV fleet	Scale AFN density and coverage Enable launch of OEM production vehicles
Ecosystem Development	Build the first L Donghai Bri	4 trucking lane along idge of Shanghai	Continued hardware maturity and optimization	Scaled production of integrated OEM produced AV trucks
Number of Driver Out Trucks		105	1005	1,000s

05 Full Stack Autonomous Technology

rrrrr

Core Technology Architecture

TuSimple | Investor Presentation

Note: For the avoidance of doubt, the ADS Onboard Software is not housed onboard the trailer 1. Other onboard functions include localization, calibration, embedded software, and more.

Technology Architecture Overview

TuSimple's combined technology platform and organizational capability encompass the overarching requirements to support continuous, scalable freight operations

B

ADS Onboard Software

- Best-in-class long-range perception, multi-modality sensorfusion to comprehend the road environment
- Robust prediction, planning, and control functionalities designed for navigating through diverse traffic scenarios including construction zones
- Proprietary embedded software providing and optimizing embedded compute as well as proprietary sensing unit, along with other L4 hardware

Offboard Technology

- Holistic set of software tools that covers the entire development cycle and accelerates the functionality iteration cycle
- End-to-end simulation to enable cost efficient, year-round testing
- Scalable mapping with low creation and maintenance
- Autonomy visualization platform supporting both development and deployment of AV operations

ADS Hardware Solutions

- Proprietary ADS hardware solutions for sensor suites, by-wire controls system, and compute platform
- **Camera-centric backbone** featuring custom layout design and packaging flexibly supporting multiple layouts and form factors
- **TuSimple Domain Controller (TDC)** developed from the ground up to serve as autonomous truck's centralized compute unit

Autonomous System Integration and Safety

- Mature development platform combining automotive processes and agile technology development (Safety Case framework, V&V framework)
- **Experience upfitting and integrating critical safety systems** including both software and hardware with OEMs
- Thorough testing operations that are key to providing validation, system confidence, and continuous improvement

Α

Proven L4 Capable Onboard Software Technology tusimple

Solved critical autonomous trucking challenges with long range perception key for semi-trucks, planning and prediction enabling maneuvers, and control that optimizes fuel economy and driving performance

Onboard Software Components

Three differentiated and unified modules within onboard software that address the requirements of AV trucking

Perception, Tracking, and Fusion

Visualizing the road environment with robust long-range capabilities that address highway driving speeds and long stopping distance requirements

Control

Comprehends perception inputs to semantically represent environment constraints and generate feasible trajectories that obey driving rules to reach goals

Software architecture with predictive control functionalities delivering smooth motion and superior driving performance

Benefits of Long-Range Perception

Unprotected Left Hand Turn

longer than a passenger car

elongated turn, therefore an

autonomous semi-truck will not be able to make a

exclusively relying on lidar

Lidar only systems do not provide a

sufficient planning horizon for the

safe unprotected left-hand turn if

Semi-trucks take up to 16 seconds to make a safe left-hand turn, significantly

Longer Braking Distances

16

600

- ~2x longer braking distance for semitrucks due to larger size requires longer planning horizon
- TuSimple camera-based 1,000m perception range is designed to provide up to 35 second planning horizon

Prediction and Planning Capabilities and Highlights

1. Ego denotes the TuSimple vehicle operating in autonomous mode

tu simple

Precise Control Delivers Superior Driving Performance tusimple

State of the art, predictive "all-in-one" optimal controller that can balance motion control/smoothness, minimize needed actuation, and maximize fuel economy

Predictive Control

- Capable of both local and highway driving regimens
- Innovative "hybrid mode"
- Integration of control and novel uncertainty model estimator .
- Measured control performance
- Integration of an optimal uncertainty/envelope tracker
- Proprietary, high-speed loop solver
- Enhanced fuel economy driving techniques
- In-house simulation environment matches real truck control responses in our system in loop (SIL) digital simulator enabling millions of scenarios testing

Autonomous Driver Control Improvements

10%+ improvement in fuel economy in	Category	Manual MPG	Autonomy MPG	Percentage
	Highway Cruise	7.54	7.97	5.75%
More efficient	Front Vehicle Cut-In	10.63	13.50	27.00%
braking (engine	Slow Car Following	8.63	9.53	10.40%
braking) and momentum conservation				
	Aggregated Highway	7.77	8.64	11.09%

1. 6 months of testing with over 30k miles in autonomy mode (Speed range: 40mph – 80mph, Road grade : -4% to 4%, Vehicle weight: 16 tons to 35 tons) 2. Non-player character

ADS Hardware Environment

Focused development since inception on critical ADS enabling hardware through multiple generations

ADS Hardware Systems and Components

- Competitive advantage driven by in-house camera design that matches onboard software capabilities
- Leverages off the shelf sensors or components where possible to remain capital efficient and focused on core competencies
- Focused on software and hardware development of critical components that allow for reliable testing and scaled production

Compute and Communications

TuSimple Sensing Unit Sensor pre-processing unit for all L4 sensors

Vehicle Control Unit

Auto-grade ECU¹ for direct command control of steering, powertrain, and braking

Autonomous Vehicle Communications Gateway Ruggedized controller handles AV truck bi-directional communications

Ruggedized Compute Unit Central computing unit for driving function and overall L4 orchestration

TuSimple Domain Controller

Ground up hardware design serves as autonomous truck's centralized compute unit

Sensor Suite

- Full suite of cameras, lidars, radars, GNSS, IMUs, microphones, rain / light detection, etc.
- Accurately capture environment in broad set ODD
- Multiple layouts for physical FOV², 360° coverage, and necessary redundancy

В

1. Electronic control unit 2. Field of view

TuSimple Domain Controller

L4 Use Cases and Cost Efficiencies

The TDC replaces distributed compute units as an integrated redundant TSU, VCU, Redundant CU TDCs Fully Distributed Electronic TDC Replaces Redundant Architecture Controllers

Additional Near-Term Revenue Opportunities

Benefits of the TDC

- Partnership with NVIDIA for the SOC reference design; it's fully proprietary hardware
- Proprietary designed system includes:

В

Better Integration

Low Power Shorter Consumption **R&D** Cycles

Lower **End-User Costs**

The TDC serves as the single integrated domain controller in L2+ / L3 system

- Integrated across sensing, computing, and vehicle control
- Distributed electrical architecture utilizing a multitude of ECUs is inefficient for computing and updating software
- Unified central domain controller is much more efficient
- Flexibility to provide the perception module only, perception and planning & control, or full system
- Can support L2+ / L3 features including highway assist and highway pilot functions

Offboard Infrastructure and Toolchain Enabling Development and Deployment

TuSimple's AV Development Toolchain is a holistic set of software tools based on real world experience that cover the entire autonomous driving development cycle and deployment of AV operations

Machine Learning Infrastructure

- Self-supervised active learning data pipeline
- Fast and scalable model training
- Large and elastic simulation workloads

- 2 Simulation
- Proprietary simulation toolchain
- End-to-end simulation
- Enable year-round testing across robust scenarios
- Automatically detects safety events within simulation

Autonomy Visualization

3

- Display and interact with the ADS
- Customizable workspace for every scenario
- Cloud replay and fast tagging of events
- Advanced plotting and direct measurement features

HD Mapping Scalable, automated nationwide mapping

4

- Low creation and maintenance costs
- Low latency updates
- High accuracy (5cm)

tu simple

Fleet Operations

- Efficient deployment for AV testing and operations
- Scalable, low-cost AV fleet management
- Vehicle-to-cloud communication for remote monitoring
- User-friendly autonomy visualization – supporting different functions

All-in-one Platform

Key Functionalities Provided

Petabytes of Data Managed on Platform

Robust Validation On Path to L4 Autonomy

Holistic Interface Development & Deployment ~11,400+ Miles of HD Mapped Routes

Every Aspect of System Development Informed by Safety tusimple

Complexity of autonomous vehicle operations necessitates a safety case that is designed to ensure adequate safety margins and that supporting operations are safe while addressing AI-specific challenges

What is Being Made Safe?

Trucks	Autonomous Driving System	Remote Data Infrastructure	Fleet Operations
 Base truck platform(s) Truck hardware modifications 	 Compute hardware Sensors Operating system and middleware Autonomy stack Diagnostics and remote communications bridge 	 Software development and deployment tools Remote monitoring software and network 	 Fleet maintenance Test fleet operations Revenue fleet operations
		- For	

The TuSimple Safety Case

Structured arguments that define specific safety objectives, clearly state all assumptions, provide rationale, directly link evidence to impacted claims, clarify effectiveness of mitigants, and understand residual risk

Autonomy Solutions to Drive Industry Forward

Combination of modular technology stack, development know-how, and proprietary domain controller enables use cases outside pure L4 autonomy **Trends Driving Mobility Today** Illustrative Use Cases & Plug-Ins L2 & L3 ADAS all-in-one modules for passenger and commercial vehicles Offboard toolchain and simulation as a service Automated Software Defined Connected Driving Vehicles Mobility White-labeling and contracted development Demand Challenging Requirements Licensing and outsourcing of individual modules (e.g., perception or control) Large dataset processing from multi-modal sensor suites Solve for complex computing with demands for cost efficiency and centralization Development and sales of SoC products Outperform multiple ECU¹ architecture with better power, cost, and maintenance efficiency

Overcome challenges in hardware-software integration

Low-cost automotive grade controllers for mining, ports, and warehouses

06 2023 Considerations and Long-Term Framework

2023 Key Considerations

TuSimple ended 2022 with ~\$995mm in Cash and Short-Term Investments; Refined 2023 Strategy Reduces Revenue and OpEx While Protecting our Balance Sheet

Revenue

- Intentional reduction of loss-making freight capacity
- Reduce geographical footprint to match AV commercial launch roadmap

OpEx

- Greater than \$120 mil. of annualized cash comp savings expected from restructuring¹
- Additional OpEx savings expected from companywide improved efficiency

Capital Expenditure

- Reduced fleet size focused on testing
- No new operational facilities beyond Arizona nor IT hardware investments

tusimple

- OpEx and CapEx savings expected to drive cash spend decrease while still funding technology development
- Improved management and yield generation of idle cash

Focusing on What it Takes to Win

Striving to Create shareholder value through building on our technology leadership, setting a concrete development roadmap, and creating near-term monetization opportunities

Investment Thesis for AV Trucking Remains Strong

Proven L4 Technology Leadership

One Holding Company, Two Distinct Businesses

Concrete Development Roadmap with Clear Commercialization Strategy

Modular Technology Stack Enables Near-Term Monetization Opportunities

Long-Term Framework

Substantial Revenue and Network Scaling opportunity has not changed

Initial focus on commercial launch TuSimple Capacity, path to positive cash flow with ~500 trucks

Launch of Carrier Owned Capacity required to scale to tens of thousands of trucks

Timing: Factors impacting timeline provided at 2022 Investor Day

- Dependent on OEM development timeline to launch Carrier Owned Capacity
- Supply chain partners focused on near-term opportunities: EV and L2+ ADAS

Thank You